top of page

1.

3.

2.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Ritter, A., Habusha, S., Edut, S., & Klavir, O. (2022). Prefrontal Control of Innate Escape Behavior-A Neural Mechanism of Enhanced Posttraumatic Threat Detection. bioRxiv, 2022-12.

Bar Or, M., & Klavir, O. (2021). The Differential Effects of the Amount of Training on Sensitivity of Distinct Actions to Reward Devaluation. Brain Sciences, 11(6), 732.

Admon, R. and Klavir, O., (2021). Cognitive and Behavioral Patterns across Psychiatric Conditions. Brain Sciences.

An S, Wang J, Zhang X, Duan Y, Xu Y, Lv J, Wang D, Zhang H, Richter-Levin G, Klavir O, Yu B. αCaMKII in the lateral amygdala mediates PTSD-Like behaviors and NMDAR-Dependent LTD. Neurobiology of Stress. 2021 Jun 23:100359.

Mahn, M., Klavir, O. and Yizhar O (2020)  Optogenetic Modulation of Neural Circuits, Chapter 11, Handbook of Neurophotonics. Editors- Pavone, F. (Ed.), Shoham, S. (Ed.). Boca Raton: CRC Press.

Yizhar, O. & Klavir, O. (2018). Reciprocal amygdala-prefrontal interactions in learning. Current opinion in neurobiology, 52, 149-155.

 

Klavir O., Prigge M., Sarel A., Paz R and Yizhar O. (2017) Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex. Nature Neuroscience, 20(6), 836-844. 

(preview: Stujenske & Likhtik -  Fear from the bottom up).

 

Klavir O., Genud-Gabai R and Paz R. (2013) Functional connectivity between Amygdala and Cingulate-cortex for adaptive aversive learning. Neuron.80(5): 1290-1300.

(preview: Likhtik & Gordon -  A surprised amygdala looks to the cortex for meaning).

 

Genud-Gabai R., Klavir O and Paz R. (2013) Safety signals in the primate Amygdala. Journal of Neuroscience. 33(46):17986-94.

 

Klavir O., Genud-Gabai R and Paz R. (2012) Low-frequency stimulation depresses the primate anterior-cingulate-cortex and prevents spontaneous recovery of aversive memories. Journal of Neuroscience. 32:8589-8597.

 

Klavir O., Winter C. and Joel D. (2011). High but not low frequency stimulation of both the globus pallidus and the entopeduncular nucleus  reduces ‘compulsive’ lever-pressing in rats. Behavioural Brain Research. 216, 84-93.

 

Schilman E. A., Klavir O., Winter C., Sohr R. and Joel D. (2010). The role of the striatum in compulsive behavior in intact and orbitofrontal-cortex-lesioned rats: possible involvement of the serotonergic system. Neuropsychopharmacology.35(4), 1026-39.

 

Klavir O., Winter C., Flash S. and Joel D. (2009). High frequency stimulation and pharmacological inactivation of the subthalamic nucleus reduces ‘compulsive’ lever-pressing in rats. Experimental Neurology. 215(1), 101-109.

 

Faisher-Grinberg S., Klavir O. and Joel D. (2008). The role of 5-HT2A and 5-HT2C receptors in the signal attenuation rat model of obsessive–compulsive disorder.  International Journal of Neuropsychopharmacology. 11, 1–15.

 

Winter C., Flash S., Klavir O., Klein J., Sohr R. and Joel D. (2008). The role of the subthalamic nucleus in ‘compulsive’ behavior in rats. European Journal of Neuroscience. 27, 1902-11.

 

Joel, D & Klavir O. (2006). The effects of temporary inactivation of the orbital cortex in the signal attenuation rat model of obsessive compulsive disorder. Behavioral Neuroscience. 120(4); 976-983.

bottom of page